Food Quality & Safety
  • Home
  • About
    Us
    • Food Quality & Safety‘s Mission
    • Contact Us
    • Authors
    • Manage Subscription
    • Advertise
    • Magazine Archive
    • Copyright
    • Privacy Policy
  • On the
    Farm
  • Safety & Sanitation
    • Environmental Monitoring
    • Hygiene
    • Pest Control
    • Clean In Place
    • Allergens
    • Sanitizing
    • Training
  • Quality
    • Authenticity
    • Textures & Flavors
    • Labeling
    • Shelf Life
    • Outsourcing
    • Auditing/Validation
    • Supplier Programs
  • Testing
    • Seafood
    • Dairy
    • Hormones/Antibiotics
    • Produce
    • Ingredients
    • Beverages
    • Meat & Poultry
    • Animal Food
  • In the
    Lab
    • Lab Software
    • Pathogen Control
    • Physical Properties
    • Contaminants
    • Measurement
    • Sampling
  • Manufacturing & Distribution
    • Information Technology
    • Plant Design
    • Foreign Object Control
    • Temperature/Humidity
    • Packaging
    • Transportation
    • Tracking & Traceability
  • Food Service & Retail
    • Cleaning & Sanitizing
    • Stock Management
    • Hygiene
    • Food Preparation
    • Allergens
    • Education
    • Temperature Monitoring
  • Regulatory
    • FSMA
    • Guidelines & Regulations
    • Recalls
  • Resources
    • Whitepaper
    • Webinars
    • Video
    • Events
    • Food Library
    • Jobs
  • FQ&S
    Award
  • Search

Updating Use of Glazing in the Frozen Seafood Industry

February 14, 2016 • By Nuno F. Soares

  • Tweet
Print-Friendly Version

Industry measures and presents the amount of glazing as the percentage from the glazed product that is actually glazing water. Although this value can be important when defining the product price, it may be deceiving regarding the ability to protect the product during frozen storage. If glazing works as a barrier to separate the frozen fish from the cold air, the critical parameter should be its thickness. In opposition to the percentage of glazing, this value is independent of the kind of product (or its size and shape) and will clearly indicate the capacity of glazing to protect any product according to a set of storage conditions (e.g. storage temperature, temperature fluctuations, and storage period).

You Might Also Like
  • Coping with Shelf-Life
  • Making Fluid Milk Taste Better Longer
  • Scientific Findings: Shelf-Stable Chhana Kheer
Explore This Issue
February/March 2016
ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

Contrary to what many may think, glazing loss is slow especially at low temperatures and when temperature fluctuations are avoided. When salmon was stored during 37 weeks in an industrial freezing chamber at -21.4 ± 1.6 degrees Celsius (-6.5 ± 2.9 degrees Fahrenheit), only 7.1 percent of it glazing was lost at the end of the experiment. But when the product was stored at -5.0 ± 0.6 degrees Celsius (23.0 ± 1.1 degrees Fahrenheit), a similar percentage of glazing was lost (6.9 percent) just after seven weeks. At the end of the research period (14 weeks), it reached a loss as high as 17.1 percent. When a chitosan coating (0.5 percent weight/volume, or w/v) was used to protect the product, the improvement at the end of the experiments was noteworthy, reducing the amount of loss to about half of the obtained with water glazing.

Chart 2: Coating/glazing thickness variation along dipping time for salmon at -25° C/-13° F glazed with water at 0.5° C/32.9° F ( ) and salmon at -15° C /5 °F coated with chitosan at 8° C/46.4° F ( ). Each point represents the mean ± standard deviation of 15 replications.

Chart 2: Coating/glazing thickness variation along dipping time for salmon at -25° C/-13° F glazed with water at 0.5° C/32.9° F ( ) and salmon at -15° C /5 °F coated with chitosan at 8° C/46.4° F ( ). Each point represents the mean ± standard deviation of 15 replications.

Although glazing may not be uniformly distributed on the product (especially in corners it can be thinner), it is possible to assume that with such low glazing thickness losses after 37 weeks at usual storage temperatures, the product should be safe from exposure to cold air during the typical shelf life period (52 to 104 weeks). As mentioned before, the only way to guarantee that the product is protected is to think in terms of thickness and not in percentage of glazing. To better study this problem it is necessary to understand the correlation between glazing percentage and its thickness and how the variables of glazing application affect its initial value.

Glazing Thickness and Variables

It is empirical and of common sense that the amount of glaze that is formed when a frozen fish product is immersed in a cold solution is dependent on the temperatures of the product and of the solution, the immersion time, and the product itself. More challenging are answers to questions like: How each variable impacts the amount of glaze? What are the limits to glazing uptake? How glazing uptake translates into glazing thickness?

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

These issues started to be addressed in recent research. When salmon at -25 degrees Celsius (-13 degrees Fahrenheit) was dipped in water at 0.5 degrees Celsius (32.9 degrees Fahrenheit) during 10, 20, 30, 40, 50, and 60 seconds, the coating thickness obtained increased between 0.57 millimeters (mm) for 10 second dipping and 0.84 mm for 60 second dipping. Raising the temperature of the salmon in 10 degrees Celsius (18 degrees Fahrenheit) resulted in an average reduction of the glazing thickness of 27 percent. Likewise, when water temperature was raised by 2.0 degrees Celsius (3.6 degrees Fahrenheit), the thickness was also reduced, but only by 13.6 percent (on average). This last experiment clearly showed that the reduction was greater for 10 second and 20 second dipping times, where on average the reduction was 23.1 percent; the longer dipping times (30 to 60 seconds) had only 8.8 percent average reduction.

Pages: 1 2 3 4 5 | Single Page

Filed Under: Quality, Seafood, Shelf Life Tagged With: Food Quality, Food Safety, glaze, glazing, Seafood, Shelf LifeIssue: February/March 2016

You Might Also Like:
  • Coping with Shelf-Life
  • Making Fluid Milk Taste Better Longer
  • Scientific Findings: Shelf-Stable Chhana Kheer
  • LTST Process Prolongs Shelf Life of Milk

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Current Issue

October/November 2019

  • Issue Articles »
  • Current Issue PDF »
  • Subscribe »
  • Follow Us:

  • Facebook
  • Twitter
  • LinkedIn

Food Quality & Safety Blog  

Managing Change as a Food Safety Professional

… [Read More]

Previous posts »

Paid Partner Content

Avoiding Overwhelming Product Recall Costs

Innovative food safety inspection systems are being developed in Germany. Learn more about the latest technologies from Bizerba and benefit from our free guidelines ensuring consistent food production safety.

  • Recall News
  • Industry News
    • Cay Thi Queentrees Food USA Recalls Poultry Products
    • Padrino Foods, LLC Recalls Beef Tamales
    • Simmons Prepared Foods, Inc. Recalls Poultry Products
    • Rastelli Bros., Inc. Recalls Meat Products
    View more »
    • Researchers Uncover Science Behind Using UV Light to Disarm Pathogens
    • In Memoriam: Daniel Y. C. Fung, PhD
    • E. coli Illness Linked to Romaine Lettuce Expands
    • Salmonella Outbreak and Ground Beef Recall Stir Transparency Debate
    • FDA Extends Deadline for Supply-Chain Approval
    View more »

Polls

How interested is your company in cannabis testing for its food/beverage products?

View Results

Loading ... Loading ...
  • Polls Archive

Whitepapers

  • Food Authenticity Testing with Agilent 6546 LC/Q-TOF and MassHunter Classifier

View More Whitepapers »

On-Demand Webinars

  • Reduce Non-Recyclable Materials
  • Why a Food Safety Culture Is Critical to Your Business

View More Webinars »

Food Quality & Safety (formerly Food Quality) is the established authority in delivering strategic and tactical approaches necessary for quality assurance, safety, and security in the food and beverage industry.

Advertise / Targeted list rental/3rd Party emails / Subscribe / Contact Us / Privacy Policy / Terms of Use

ASBPE Award Winner

Copyright © 2000–2019 Wiley Periodicals, Inc., a Wiley Company. All rights reserved. ISSN 2399-1399

Wiley

This site uses cookies: Find out more.