The Future of Allergen Testing with Mass Spectrometry

The Future of Allergen Testing with Mass Spectrometry

The simultaneous detection of seven allergens in one run, with each (except walnut) allergen having four peptides detected. As an example, the four peptides for milk are indicated.

For many people, trying new foods is a delicious adventure. But for consumers with potentially fatal food allergies, it can be a dance with death, relying on incomplete product labeling and inaccurate testing methods. But a new focus for an old technology has given allergy sufferers hope that in the near future they can know how safe what they are about to eat really is.

Federal labeling regulations are in place, but they are hardly comprehensive. The Food Allergen Labeling and Consumer Protection Act of 2004 requires manufacturers to include a “contains” statement, a clear list of ingredients that are defined as allergens in the U.S. by the “big eight” list: Eggs, milk, wheat, peanuts, soy, tree nuts, fish, and crustacean shellfish. The problem arises when the allergens are not intended ingredients. If the food is made in the same facility and on the same equipment as food containing allergens, some of these potentially dangerous ingredients may wind up cross-contaminating other foods.

To warn consumers of possible cross-contamination, companies often adopt advisory statements revealing that a food was produced in a facility that also processes allergens. But these statements are completely voluntary; they are not required by labeling laws.

Conventional Testing Tools

Warning statements cannot be a substitute for Good Manufacturing Practices. Companies are still expected to make a good faith effort to ensure foods that are not supposed to contain allergens are, in fact, allergen-free. That is where allergen testing comes in. But just how reliable are conventional testing technologies?

Typically, companies rely on two types of tests: polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). PCR is a fast and inexpensive method to identify DNA. It amplifies, or copies, small segments of DNA until a large enough sample is grown to determine if an allergen is present. Although the method can identify the DNA of milk, peanuts, soy, walnuts, hazelnuts, fish, and crustaceans, there are several pitfalls to this method that can allow an allergen to slip through the cracks. The most notable is that PCR detects the presence of DNA, but not proteins. Egg whites and milk, significant allergens, contain little or no DNA, but high quantities of protein. Therefore, this method is not reliable for these foods.

The ELISA method, on the other hand, detects antibodies in a sample that indicate the presence of allergens, but a separate kit is required for each allergen, which can get expensive. Consequently, companies often do not test products for the presence of all possible allergens. They do a cost-effectiveness analysis and select the top one, two, or three allergens most likely to be present. Any others can go undetected.

Mass Spectrometer Advantage

A newer technology for detecting allergens is mass spectrometry (MS), a process that identifies proteins and peptides with a high level of accuracy. Unlike other methods, MS directly detects allergens by breaking them down into peptides, or short strings of amino acids that link together to form larger proteins. This platform offers several advantages over conventional detection methods.

Bert Popping, PhD, director, scientific development at Eurofins, an international analytical testing company which is known to have pioneered the use of MS for food allergen testing, explains the reliability of results by MS equipment from the way they detect peptides rather than entire protein structures. Proteins can be degraded by processing, cooking, etc., and an altered structure may not be recognized when an assay is looking for an allergen. However, the shorter peptides are more likely to be still intact after processing and therefore remain detectable by MS. And MS detects more than one peptide per allergen, so should one be degraded, the offending substance can still be discovered by at least one or two other peptides.

Leave a Reply

Your email address will not be published. Required fields are marked *